AMMONIA

1. PERFORMANCE

2) Sampling time : 1 minute/1 pump stroke
3) Detectable limit : 0.2 ppm (500mℓ)
4) Shelf life : 3 years

5) Operating temperature : $0 \sim 40 \,^{\circ}\text{C}$

6) Temperature compensation : Necessary (See "TEMPERATURE CORRECTION TABLE")
7) Reading : Direct reading from the scale calibrated by 1 pump stroke
8) Colour change : Pale purple → Pale yellow

2. RELATIVE STANDARD DEVIATION

RSD-low: 10% RSD-mid.: 5% RSD-high: 5%

3. CHEMICAL REACTION

By reacting with Phosphoric acid, PH indicator is discoloured. NH₃ + H₃PO₄→ (NH₄)₂HPO₄

4. CALIBRATION OF THE TUBE

STANDARD GAS CYLINDER METHOD

5. INTERFERENCE AND CROSS SENSITIVITY

Substance	Interference	Coexistence
Amines	Similar stain is produced.	Higher readings are given.
Chlorine	The accuracy of readings is not affected.	Lower readings are given.
Sulphur dioxide	"	"

(NOTE)

When the concentration is below 5 ppm, 5 pump strokes can be used to determine the lower concentration and following formula is available to obtain the actual concentration.

Actual concentration = Temperature corrected concentration \times 1/5

When the concentration is over 100 ppm, 1/2 pump strokes can be used to determine the higher concentration and following formula is available to obtain the actual concentration.

Actual concentration = Temperature corrected concentration \times 2

COEFFICINET TABLE FOR TEMPERATURE CORRECTION (AT 20°C)

Temperature (℃)	0	1	2	3	4	5	6	7	8	9	10~40
Coefficient	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00

Actual concentration = Reading value X Coefficient for temperature correction