PHOSPHINE

1. PERFORMANCE

1) Measuring range : 0.5-10.0 ppm 0.25-5.0 ppm 1-20 ppm Number of pump strokes $1(100 \text{m} \ell)$ $2(200 \text{m} \ell)$ $1/2(50 \text{m} \ell)$

2) Sampling time ∴ 1 minute/1 pump stroke 3) Detectable limit ∴ 0.1 ppm (200m ℓ)

4) Shelf life 1 year5) Operating temperature $0 \sim 40^{\circ}$

6) Reading : Direct reading from the scale calibrated by 1 pump stroke

7) Colour change : Yellow→Pink

2. RELATIVE STANDARD DEVIATION

RSD-low: 15% RSD-mid.: 10% RSD-high: 5%

3. CHEMICAL REACTION

By reacting with Mercuric chloride (II), Hydrogen chloride is produced and PH indicator is discoloured. $PH_3 + 3HgCI_2 \rightarrow P(HgCI)_3 + 3HCI$

4. CALIBRATION OF THE TUBE

STANDARD GAS CYLINDER METHOD

5. INTERFERENCE AND CROSS SENSITIVITY

0 = = 0 0 0			
Substance	Interference	ppm	Coexistence
Ammonia		20	A stained layer at the side of gas inlet is bleached out and lower readings are given.
Hydrogen sulphide	Similar stain is produced.	50	Higher readings are given.
Mercaptans	"		"

(NOTE)

When the concentration is below 0.5ppm, 2 pump strokes can be used to determine the lower concentration with the following formula;

Actual concentration = $1/2 \times$ Reading value

When the concentration is over 10.0ppm, 1/2 pump strokes can be used to determine the higher concentration with the following formula;

Actual concentration = $2 \times$ Reading value